Optional
[SIGNAL]true if the stream can be written
Static
Readonly
captureValue: Symbol.for('nodejs.rejection')
See how to write a custom rejection handler
.
Static
captureValue: boolean
Change the default captureRejections
option on all new EventEmitter
objects.
Static
defaultBy default, a maximum of 10
listeners can be registered for any single
event. This limit can be changed for individual EventEmitter
instances
using the emitter.setMaxListeners(n)
method. To change the default
for allEventEmitter
instances, the events.defaultMaxListeners
property
can be used. If this value is not a positive number, a RangeError
is thrown.
Take caution when setting the events.defaultMaxListeners
because the
change affects all EventEmitter
instances, including those created before
the change is made. However, calling emitter.setMaxListeners(n)
still has
precedence over events.defaultMaxListeners
.
This is not a hard limit. The EventEmitter
instance will allow
more listeners to be added but will output a trace warning to stderr indicating
that a "possible EventEmitter memory leak" has been detected. For any single
EventEmitter
, the emitter.getMaxListeners()
and emitter.setMaxListeners()
methods can be used to
temporarily avoid this warning:
import { EventEmitter } from 'node:events';
const emitter = new EventEmitter();
emitter.setMaxListeners(emitter.getMaxListeners() + 1);
emitter.once('event', () => {
// do stuff
emitter.setMaxListeners(Math.max(emitter.getMaxListeners() - 1, 0));
});
The --trace-warnings
command-line flag can be used to display the
stack trace for such warnings.
The emitted warning can be inspected with process.on('warning')
and will
have the additional emitter
, type
, and count
properties, referring to
the event emitter instance, the event's name and the number of attached
listeners, respectively.
Its name
property is set to 'MaxListenersExceededWarning'
.
Static
Readonly
errorThis symbol shall be used to install a listener for only monitoring 'error'
events. Listeners installed using this symbol are called before the regular 'error'
listeners are called.
Installing a listener using this symbol does not change the behavior once an 'error'
event is emitted. Therefore, the process will still crash if no
regular 'error'
listener is installed.
True if the stream has been aborted.
No-op setter. Stream aborted status is set via the AbortSignal provided in the constructor options.
true if this is an async stream
Set to true to make this stream async.
Once set, it cannot be unset, as this would potentially cause incorrect behavior. Ie, a sync stream can be made async, but an async stream cannot be safely made sync.
The amount of data stored in the buffer waiting to be read.
For Buffer strings, this will be the total byte length.
For string encoding streams, this will be the string character length,
according to JavaScript's string.length
logic.
For objectMode streams, this is a count of the items waiting to be
emitted.
true if the stream has been forcibly destroyed
true if the 'end' event has been emitted
The BufferEncoding
currently in use, or null
true if the stream is currently in a flowing state, meaning that any writes will be immediately emitted.
True if this is an objectMode stream
true if the stream is currently in a paused state
Static
isAlias for isStream
Former export location, maintained for backwards compatibility.
Optional
[captureRest
...args: AnyRestAlias for Minipass#on
Destroy a stream, preventing it from being used for any further purpose.
If the stream has a close()
method, then it will be called on
destruction.
After destruction, any attempt to write data, read data, or emit most events will be ignored.
If an error argument is provided, then it will be emitted in an 'error' event.
Optional
er: unknownMostly identical to EventEmitter.emit
, with the following
behavior differences to prevent data loss and unnecessary hangs:
If the stream has been destroyed, and the event is something other
than 'close' or 'error', then false
is returned and no handlers
are called.
If the event is 'end', and has already been emitted, then the event is ignored. If the stream is in a paused or non-flowing state, then the event will be deferred until data flow resumes. If the stream is async, then handlers will be called on the next tick rather than immediately.
If the event is 'close', and 'end' has not yet been emitted, then the event will be deferred until after 'end' is emitted.
If the event is 'error', and an AbortSignal was provided for the stream, and there are no listeners, then the event is ignored, matching the behavior of node core streams in the presense of an AbortSignal.
If the event is 'finish' or 'prefinish', then all listeners will be removed after emitting the event, to prevent double-firing.
End the stream, optionally providing a final write.
See Minipass#write for argument descriptions
Optional
cb: (() => void)Optional
cb: (() => void)Optional
encoding: EncodingOptional
cb: (() => void)Returns an array listing the events for which the emitter has registered
listeners. The values in the array are strings or Symbol
s.
import { EventEmitter } from 'node:events';
const myEE = new EventEmitter();
myEE.on('foo', () => {});
myEE.on('bar', () => {});
const sym = Symbol('symbol');
myEE.on(sym, () => {});
console.log(myEE.eventNames());
// Prints: [ 'foo', 'bar', Symbol(symbol) ]
Returns the current max listener value for the EventEmitter
which is either
set by emitter.setMaxListeners(n)
or defaults to defaultMaxListeners.
Returns the number of listeners listening for the event named eventName
.
If listener
is provided, it will return how many times the listener is found
in the list of the listeners of the event.
The name of the event being listened for
Optional
listener: FunctionThe event handler function
Returns a copy of the array of listeners for the event named eventName
.
server.on('connection', (stream) => {
console.log('someone connected!');
});
console.log(util.inspect(server.listeners('connection')));
// Prints: [ [Function] ]
Mostly identical to EventEmitter.off
If a 'data' event handler is removed, and it was the last consumer (ie, there are no pipe destinations or other 'data' event listeners), then the flow of data will stop until there is another consumer or Minipass#resume is explicitly called.
Mostly identical to EventEmitter.on
, with the following
behavior differences to prevent data loss and unnecessary hangs:
Adding a 'data' event handler will trigger the flow of data
Adding a 'readable' event handler when there is data waiting to be read will cause 'readable' to be emitted immediately.
Adding an 'endish' event handler ('end', 'finish', etc.) which has already passed will cause the event to be emitted immediately and all handlers removed.
Adding an 'error' event handler after an error has been emitted will cause the event to be re-emitted immediately with the error previously raised.
Adds a one-time listener
function for the event named eventName
. The
next time eventName
is triggered, this listener is removed and then invoked.
server.once('connection', (stream) => {
console.log('Ah, we have our first user!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
By default, event listeners are invoked in the order they are added. The emitter.prependOnceListener()
method can be used as an alternative to add the
event listener to the beginning of the listeners array.
import { EventEmitter } from 'node:events';
const myEE = new EventEmitter();
myEE.once('foo', () => console.log('a'));
myEE.prependOnceListener('foo', () => console.log('b'));
myEE.emit('foo');
// Prints:
// b
// a
The name of the event.
The callback function
Rest
...args: any[]Adds the listener
function to the beginning of the listeners array for the
event named eventName
. No checks are made to see if the listener
has
already been added. Multiple calls passing the same combination of eventName
and listener
will result in the listener
being added, and called, multiple times.
server.prependListener('connection', (stream) => {
console.log('someone connected!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
The name of the event.
The callback function
Rest
...args: any[]Adds a one-timelistener
function for the event named eventName
to the beginning of the listeners array. The next time eventName
is triggered, this
listener is removed, and then invoked.
server.prependOnceListener('connection', (stream) => {
console.log('Ah, we have our first user!');
});
Returns a reference to the EventEmitter
, so that calls can be chained.
The name of the event.
The callback function
Rest
...args: any[]Returns a copy of the array of listeners for the event named eventName
,
including any wrappers (such as those created by .once()
).
import { EventEmitter } from 'node:events';
const emitter = new EventEmitter();
emitter.once('log', () => console.log('log once'));
// Returns a new Array with a function `onceWrapper` which has a property
// `listener` which contains the original listener bound above
const listeners = emitter.rawListeners('log');
const logFnWrapper = listeners[0];
// Logs "log once" to the console and does not unbind the `once` event
logFnWrapper.listener();
// Logs "log once" to the console and removes the listener
logFnWrapper();
emitter.on('log', () => console.log('log persistently'));
// Will return a new Array with a single function bound by `.on()` above
const newListeners = emitter.rawListeners('log');
// Logs "log persistently" twice
newListeners[0]();
emitter.emit('log');
Low-level explicit read method.
In objectMode, the argument is ignored, and one item is returned if available.
n
is the number of bytes (or in the case of encoding streams,
characters) to consume. If n
is not provided, then the entire buffer
is returned, or null
is returned if no data is available.
If n
is greater that the amount of data in the internal buffer,
then null
is returned.
Optional
n: null | numberMostly identical to EventEmitter.removeAllListeners
If all 'data' event handlers are removed, and they were the last consumer (ie, there are no pipe destinations), then the flow of data will stop until there is another consumer or Minipass#resume is explicitly called.
Optional
ev: EventAlias for Minipass#off
Resume the stream if it is currently in a paused state
If called when there are no pipe destinations or data
event listeners,
this will place the stream in a "discarded" state, where all data will
be thrown away. The discarded state is removed if a pipe destination or
data handler is added, if pause() is called, or if any synchronous or
asynchronous iteration is started.
By default EventEmitter
s will print a warning if more than 10
listeners are
added for a particular event. This is a useful default that helps finding
memory leaks. The emitter.setMaxListeners()
method allows the limit to be
modified for this specific EventEmitter
instance. The value can be set to Infinity
(or 0
) to indicate an unlimited number of listeners.
Returns a reference to the EventEmitter
, so that calls can be chained.
Fully unhook a piped destination stream.
If the destination stream was the only consumer of this stream (ie,
there are no other piped destinations or 'data'
event listeners)
then the flow of data will stop until there is another consumer or
Minipass#resume is explicitly called.
Write data into the stream
If the chunk written is a string, and encoding is not specified, then
utf8
will be assumed. If the stream encoding matches the encoding of
a written string, and the state of the string decoder allows it, then
the string will be passed through to either the output or the internal
buffer without any processing. Otherwise, it will be turned into a
Buffer object for processing into the desired encoding.
If provided, cb
function is called immediately before return for
sync streams, or on next tick for async streams, because for this
base class, a chunk is considered "processed" once it is accepted
and either emitted or buffered. That is, the callback does not indicate
that the chunk has been eventually emitted, though of course child
classes can override this function to do whatever processing is required
and call super.write(...)
only once processing is completed.
Static
addExperimental
Listens once to the abort
event on the provided signal
.
Listening to the abort
event on abort signals is unsafe and may
lead to resource leaks since another third party with the signal can
call e.stopImmediatePropagation()
. Unfortunately Node.js cannot change
this since it would violate the web standard. Additionally, the original
API makes it easy to forget to remove listeners.
This API allows safely using AbortSignal
s in Node.js APIs by solving these
two issues by listening to the event such that stopImmediatePropagation
does
not prevent the listener from running.
Returns a disposable so that it may be unsubscribed from more easily.
import { addAbortListener } from 'node:events';
function example(signal) {
let disposable;
try {
signal.addEventListener('abort', (e) => e.stopImmediatePropagation());
disposable = addAbortListener(signal, (e) => {
// Do something when signal is aborted.
});
} finally {
disposable?.[Symbol.dispose]();
}
}
Disposable that removes the abort
listener.
Static
getReturns a copy of the array of listeners for the event named eventName
.
For EventEmitter
s this behaves exactly the same as calling .listeners
on
the emitter.
For EventTarget
s this is the only way to get the event listeners for the
event target. This is useful for debugging and diagnostic purposes.
import { getEventListeners, EventEmitter } from 'node:events';
{
const ee = new EventEmitter();
const listener = () => console.log('Events are fun');
ee.on('foo', listener);
console.log(getEventListeners(ee, 'foo')); // [ [Function: listener] ]
}
{
const et = new EventTarget();
const listener = () => console.log('Events are fun');
et.addEventListener('foo', listener);
console.log(getEventListeners(et, 'foo')); // [ [Function: listener] ]
}
Static
getReturns the currently set max amount of listeners.
For EventEmitter
s this behaves exactly the same as calling .getMaxListeners
on
the emitter.
For EventTarget
s this is the only way to get the max event listeners for the
event target. If the number of event handlers on a single EventTarget exceeds
the max set, the EventTarget will print a warning.
import { getMaxListeners, setMaxListeners, EventEmitter } from 'node:events';
{
const ee = new EventEmitter();
console.log(getMaxListeners(ee)); // 10
setMaxListeners(11, ee);
console.log(getMaxListeners(ee)); // 11
}
{
const et = new EventTarget();
console.log(getMaxListeners(et)); // 10
setMaxListeners(11, et);
console.log(getMaxListeners(et)); // 11
}
Static
listenerA class method that returns the number of listeners for the given eventName
registered on the given emitter
.
import { EventEmitter, listenerCount } from 'node:events';
const myEmitter = new EventEmitter();
myEmitter.on('event', () => {});
myEmitter.on('event', () => {});
console.log(listenerCount(myEmitter, 'event'));
// Prints: 2
The emitter to query
The event name
Static
onimport { on, EventEmitter } from 'node:events';
import process from 'node:process';
const ee = new EventEmitter();
// Emit later on
process.nextTick(() => {
ee.emit('foo', 'bar');
ee.emit('foo', 42);
});
for await (const event of on(ee, 'foo')) {
// The execution of this inner block is synchronous and it
// processes one event at a time (even with await). Do not use
// if concurrent execution is required.
console.log(event); // prints ['bar'] [42]
}
// Unreachable here
Returns an AsyncIterator
that iterates eventName
events. It will throw
if the EventEmitter
emits 'error'
. It removes all listeners when
exiting the loop. The value
returned by each iteration is an array
composed of the emitted event arguments.
An AbortSignal
can be used to cancel waiting on events:
import { on, EventEmitter } from 'node:events';
import process from 'node:process';
const ac = new AbortController();
(async () => {
const ee = new EventEmitter();
// Emit later on
process.nextTick(() => {
ee.emit('foo', 'bar');
ee.emit('foo', 42);
});
for await (const event of on(ee, 'foo', { signal: ac.signal })) {
// The execution of this inner block is synchronous and it
// processes one event at a time (even with await). Do not use
// if concurrent execution is required.
console.log(event); // prints ['bar'] [42]
}
// Unreachable here
})();
process.nextTick(() => ac.abort());
Use the close
option to specify an array of event names that will end the iteration:
import { on, EventEmitter } from 'node:events';
import process from 'node:process';
const ee = new EventEmitter();
// Emit later on
process.nextTick(() => {
ee.emit('foo', 'bar');
ee.emit('foo', 42);
ee.emit('close');
});
for await (const event of on(ee, 'foo', { close: ['close'] })) {
console.log(event); // prints ['bar'] [42]
}
// the loop will exit after 'close' is emitted
console.log('done'); // prints 'done'
Optional
options: StaticEventEmitterIteratorOptionsAn AsyncIterator
that iterates eventName
events emitted by the emitter
Optional
options: StaticEventEmitterIteratorOptionsStatic
onceCreates a Promise
that is fulfilled when the EventEmitter
emits the given
event or that is rejected if the EventEmitter
emits 'error'
while waiting.
The Promise
will resolve with an array of all the arguments emitted to the
given event.
This method is intentionally generic and works with the web platform EventTarget interface, which has no special'error'
event
semantics and does not listen to the 'error'
event.
import { once, EventEmitter } from 'node:events';
import process from 'node:process';
const ee = new EventEmitter();
process.nextTick(() => {
ee.emit('myevent', 42);
});
const [value] = await once(ee, 'myevent');
console.log(value);
const err = new Error('kaboom');
process.nextTick(() => {
ee.emit('error', err);
});
try {
await once(ee, 'myevent');
} catch (err) {
console.error('error happened', err);
}
The special handling of the 'error'
event is only used when events.once()
is used to wait for another event. If events.once()
is used to wait for the
'error'
event itself, then it is treated as any other kind of event without
special handling:
import { EventEmitter, once } from 'node:events';
const ee = new EventEmitter();
once(ee, 'error')
.then(([err]) => console.log('ok', err.message))
.catch((err) => console.error('error', err.message));
ee.emit('error', new Error('boom'));
// Prints: ok boom
An AbortSignal
can be used to cancel waiting for the event:
import { EventEmitter, once } from 'node:events';
const ee = new EventEmitter();
const ac = new AbortController();
async function foo(emitter, event, signal) {
try {
await once(emitter, event, { signal });
console.log('event emitted!');
} catch (error) {
if (error.name === 'AbortError') {
console.error('Waiting for the event was canceled!');
} else {
console.error('There was an error', error.message);
}
}
}
foo(ee, 'foo', ac.signal);
ac.abort(); // Abort waiting for the event
ee.emit('foo'); // Prints: Waiting for the event was canceled!
Optional
options: StaticEventEmitterOptionsOptional
options: StaticEventEmitterOptionsStatic
setimport { setMaxListeners, EventEmitter } from 'node:events';
const target = new EventTarget();
const emitter = new EventEmitter();
setMaxListeners(5, target, emitter);
Optional
n: numberA non-negative number. The maximum number of listeners per EventTarget
event.
Rest
...eventTargets: (EventEmitter<DefaultEventMap> | EventTarget)[]
true if the stream can be read